Course Code: 18EC412

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR

Siddharth Nagar, Narayanavanam Road – 517583

QUESTION BANK (DESCRIPTIVE)

Subject with Code :EMTL(18EC412) Course & Branch: B.Tech – ECE

Year & Sem: III-B.Tech & I-Sem Regulation: R18

UNIT –I ELECTROSTATIC FIELDS

1	a	Define coulomb's law.	[L1][CO1]	[2M]
	b	Define electric field intensity.	[L1][CO1&2]	[2M]
	c	Define Gauss's law.	[L1][CO1]	[2M]
	d	List various charge distributions.	[L1][CO1]	[2M]
	e	List Maxwell's equations for electrostatic fields.	[L1][CO1&2]	[2M]
2	a	Define Coulomb's law and derive the force F that exists between two unlike charges.	[L1][CO1&2]	[5M]
	b	Three Point Charges $Q_1=1$ mc, $Q_2=2$ mc and $Q_3=-3$ mc are respectively located at $(0,0,4)$, $(-2,6,1)$ and $(3,-4,-8)$. Calculate the electric force and electric field on Q_1 due to Q_2 and Q_3 .	[L3][CO1&2]	[5M]
3	a	Find the electric field at a point P located with a distance of r from an infinite sheet with uniform surface charge density of ρ_s C/m ² .	[L1][CO1&2]	[6M]
	b	A Point Charge of 20ηc is Located at the Origin. Determine the Magnitude and Direction of the electric field intensity at the Point (1,3,-4).	[L3][CO1&2]	[4M]
4	a	Define Gauss's Law. Apply Gauss's law to evaluate Electric Flux density for a uniformly charged Sphere.	[L1][CO1,2&3]	[7M]
	b	What are the advantages and applications of Gauss law?	[L1][CO1&2]	[3M]
5	a	Apply Gauss Law to evaluate the electric flux density at a point P due to the point charge located at the origin.	[L3][CO1,2&3]	[5M]
	b	A Point Charge 100 pC is located at $(4,1,-3)$ while the x-axis carries charge 2η C/m. If the Plane z=3 is also carries charge 5η C/m ² , find E at $(1,1,1)$.	[L3][CO1&2]	[5M]
6	a	Evaluate the two Maxwell's equations for electrostatic fields and state them.	[L5][CO1,2&3]	[8M]
	b	List Maxwell equations for electrostatic fields in integral form.	[L1][CO1,2&3]	[2M]
7	a	Classify Maxwell equations for electrostatic fields in both differential and integral form.	[L4][CO1,2&3]	[5M]
	b	Two point charges, $Q_A = +8 \mu C$ and $Q_B = -5 \mu C$, are separated by a distance $r = 10$ cm. What is the magnitude of the electric force between them?	[L3][CO1&2]	[5M]
8	a	Define the Electric Flux Density. Determine the Electric flux density at a point P due to infinite line of uniform Charge density ρ_L C/m.		[7M]
	b	Point Charges Q_1 =4 μ c , Q_2 =-5 μ c and Q_3 =2 μ c are located at (0,0,1).(-6,8,0) and (0,4,-3) respectively find D at the origin.	[L3][CO1&2]	[3M]
9	a	Define Eclectic Potential. Find the electric potential for a point charge is located at origin.	[L1][CO1&2]	[7M]
	b	Determine the Relationship between E and V.	[L5][CO1&2]	[3M]
10	Ex a)	plain the following with expression. Coloumb's law. b) Electric field intensity. c) Gauss law.	[L2][CO1,2&3]	[10M]
11	a	Deduce the electric field at a distance r due to an infinitely long straight line of charge with a uniform charge density of ρ_L C/m .	[L4] [CO1&2]	[7M]
	b	A charge of 5×10^{-8} C is distributed uniformly on the surface of a sphere of radius 1 cm. It is sphere of radius 6 cm. Calculate the electric flux.	[L3] [CO1&2]	[3M]

Course Code: 18EC412

UNIT –II MAGNETOSTATIC FIELDS

b c		[L1][CO1&2]	[2M]
С	Define Amnere's Circuit law		[#171]
	Bernie 1 Ampère 3 cheuit luw.	[L1][CO1,2&3]	[2M]
d	Define Magnetic Flux.	[L1][CO2]	[2M]
e	What is meant by Magnetostatic fields?	[L1][CO2]	[2M]
2 a	Explain Biot-Savart's Law.	[L2][CO1&2]	[5M]
b	A Positive Y-axis (Semi Infinite Line with respect to the Origin) Carries a	[L3][CO1&2]	[5M]
	Filamentary Current of 2 A in the -ay Direction. Assume it is part of a large		
	circuit. Find H at (i) A(2,3,0). (ii) B(3,12,-4).	H 21/CO1 2021	5 5 N 6 3
$\frac{3}{a}$	1 1	[L2][CO1,2&3]	[5M]
b	<u> </u>	[L5][CO1&2]	[5M]
4 <u>a</u>	1 &	[L5][CO1,2&3]	[5M]
b	E v	[L5][CO1&2]	[5M]
5 <u>a</u>	Č	[L6][CO1&2]	[5M]
b	F , ,	[L3][CO1&2]	[5M]
	magnetic flux crossing the $\Phi=\pi/2, 1 \le \rho \le 2m, 0 \le z \le 5m$.	H 01/001 0 01	[
6 <u>a</u>		[L2][CO1&2]	[5M]
b	An infinitely filamentary wire carries a current of 2A in the +z direction. Calculate B at (-3,4,7).	[L3][CO1&2]	[5M]
7 a		[L5][CO1&2]	[6M]
	applying Ampere's Circuit law.		
b	List differential and integral form of Maxwell's equation for static EM filed.	[L1][CO2&3]	[4M]
8 a		[L1][CO1&2]	[5M]
	filamentary conductor of finite length.		
b	Find H at (-3,4,0) due to the Current Filament Shown in the Figure.	[L1][CO1,2&3]	[5M]
	$ \begin{array}{c} \uparrow \\ 3A \end{array} $ $ \begin{array}{c} Z \\ -3 \\ \hline \end{array} $ $ \begin{array}{c} -3 \\ \hline \end{array} $ $ \begin{array}{c} P(-3,4,0) \\ \end{array} $ $ \begin{array}{c} X \end{array} $ $ \begin{array}{c} X \end{array} $		
9	Find H for a straight current carrying conductor using Biot Savart's law and	[L1][CO1&2]	[10M]
	Ampere's Circuit law.		
10 E	Explain any two applications of Ampere's Circuit law.	[L2][CO1,2&3]	[10M]
11 a	A Current Distribution gives rise to the vector potential $A = X^2Ya_x + Y^2Xa_y + XYZa_z$ web/m. Calculate B.	[L3] [CO1&2]	[5M]
b		[L2] [CO2]	[5M]

UNIT –III MAXWELL'S EQUATIONS (TIME VARYING FIELDS)

1	a	Define Faraday's law.	[L1][CO2&3]	[2M]
	b	Define In consistency of Ampere's law.	[L1][CO2&3]	[2M]
	С	Define Motional EMF.	[L1][CO2&3]	[2M]
	d	Define Transformer EMF.	[L1][CO2&3]	[2M]
	e	Define Displacement current.	[L1][CO2&3]	[2M]
2	a	Explain Faraday's laws in Electromagnetic induction.	[L2][CO1&2]	[6M]
	b	Prove that the Displacement Current Density $J_D = \frac{\partial D}{\partial t}$.	[L5][CO1,2&3]	[4M]
3	a	Determine the Transformer EMF for the time varying fields.	[L5][CO1,2&3]	[7M]
	b	Define Faraday's law?	[L1][CO1,2&3]	[3M]
4	a	Explain Faraday's law of electromagnetic induction and derive the Expression for Induced EMF.	[L2][CO1,2&3]	[5M]
	b	Explain the motional EMF and derive the expression for the maxwell equation.	[L2][CO1,2&3]	[5M]
5	a	Determine the Expressions for inconsistency of Ampere's law.	[L5][CO1,2&3]	[8M]
	b	Why ampere's Law is In-consistent.	[L1][CO2&3]	[2M]
6	a	Discuss Maxwell's equation in both differential and integral in final form	[L6][CO1,2&3]	[6M]
	b	An antenna radiates in free space and H= 50 $\cos(1000t\text{-}5y)$ ax A/m. Calculate ω and β .	[L3][CO2&3]	[4M]
7	a	In free space, $E=20 \cos(\omega t-50x)$ ay V/m. Calculate Jd, H .	[L3][CO2&3]	[6M]
	b	Translate the Maxwell's equations into word statement.	[L2][CO1,2&3]	[4M]
8	a	Prove that one of the Maxwell's equation is $\nabla \times E = -dB/dt$	[L5][CO1,2&3]	[6M]
	b	In free space, $H=10 \sin(\omega t-100x)$ ay A/m. Calculate Jd, E .	[L3][CO2&3]	[4M]
9	a	Prove that one of the Maxwell's equation is $\nabla \times H = J_d + J$.	[L5][CO1,2&3]	[7M]
	b	An antenna radiates in free space and E= 80 $\cos(500t\text{-8z})$ ax V/m. Calculate ω and β .	[L3][CO2&3]	[3M]
10	Ex	plain and determine the EMF for the Followings. i) Motional EMF. (ii)Transformer EMF.	[L2][CO2&3]	[10M]
11	Ex	plain the following i) Faraday's law ii) Inconsistency of Ampere's law	[L2] [CO2&3]	[10M]

Course Code: 18EC412

UNIT –IV EM WAVE PROPAGATION

1	a	Define Poynting theorem.	[L1][CO3&4]	[2M]
	b	Define polarization.	[L1][CO3&4]	[2M]
	c	Define Poynting vector.	[L1][CO3&4]	[2M]
	d	Define propagation constant.	[L1][CO3&4]	[2M]
	e	List wave equation for E and H in free space ?	[L1][CO3&4]	[2M]
2		Discuss about pointing theorem and poynting vector.	[L6][CO4&5]	[10M]
3	a	Explain and derive the characteristics of wave propagation in free space.	[L2][CO3,4&5]	[6M]
	b	Given that $E=40\cos(10^8t-3x)a_yv/m$, Determine the direction of wave	[L3][CO4&5]	[4M]
		propagation, velocity of the wave, wave length.	FI 211CO 4 0 51	F4.03 #7
4		Electric field in free space is given by E=50 cos(10 ⁸ t + βx) $a_y v/m$	[L3][CO4&5]	[10M]
		 a). Find the direction of wave propagation. b). Calculate β and the time it takes to travel a distance of λ. 		
		c). Sketch the wave at $t=0,T/4$ and $T/2$.		
5	a	Determine the expression for intrinsic impendence and propagation constant	[L5][CO4&5]	[6M]
		in a good conductor.		
	b	In a Nonmagnetic medium E= $4\sin(2\pi X 10^7 t - 0.8x) a_z v/m$, find ε_r , η .	[L3][CO4&5]	[4M]
6	a	Evaluate the wave characteristics of a uniform plane wave in free space.	[L5][CO4&5]	[6M]
	b	In free space (z \leq 0), a plane wave with H = 10 cos (10 ⁸ t - β z) \hat{a}_x mA/m is	[L3] [CO4&5]	[4M]
		incident normally on a lossless medium ($\varepsilon=2\varepsilon_0, \mu=8\mu_0$) in region $z>0$. Determine the reflected wave and the transmitted wave.		
7	a	Evaluate the wave equation in lossy dielectric medium for sinusoidal time	[L5][CO3,4&5]	[5M]
		variations.	[[]
	b	In lossless medium $\eta = 40\pi$, $\mu_r = 1$, H=2 cos ($\omega t - z$) $\hat{a}_x + 5\sin(\omega t - z)$	[L3][CO4&5]	[5M]
		\hat{a}_y . Find ε_r , ω , E for the medium.		
8	a	Evaluate the expressions for attenuation constant and phase shift constant of	[L5][CO4&5]	[5M]
	b	lossy dielectric medium. A plane wave propagating through medium with $\varepsilon_r = 8$, $\mu_r = 2$ has the	[L3][CO4&5]	[5M]
	D	electric field intensity $E = 0.5 e^{-jz^3} \sin (10^8 t - \beta z) \hat{a}_x V/m$. Determine wave		
		velocity, wave impedance and magnetic field intensity.		
9		Evaluate the expressions for reflection coefficient and transmission	[L5][CO4&5]	[10M]
		coefficient by a normal incident wave for a dielectric medium.		
10	Ex	plain the followings with an expression.	[L2][CO4&5]	[10M]
		Linear polarization ii) Circular polarization iii) Elliptical polarization		
11	In	a medium, $E = 14e^{-0.05x} \sin (2 \times 10^8 \text{ t} - 2x) \hat{a}_z \text{ V/m}$ Determine the	[L3] [CO4&5]	[10M]
		followings:		
		i) The propagation constant		
		ii) The wavelength		
		iii) The speed of the wave iv) Sketch the wave at $t=0,T/4 \& T/2$		
		11) Sketch the wave at 1–0,1/4 & 1/2		

UNIT –V TRANSMISSION LINES

1	a	What are the secondary constants of a line?	[L1][CO6]	[2M]
	b	What is characteristic impedance?	[L1][CO6]	[2M]
	c	Define transmission line.	[L1][CO6]	[2M]
	d	What is the relationship between characteristic impedance and propagation	[L1][CO6]	[2M]
	u	constant?		[211]
	e	What are the primary constants of a transmissionline?	[L1][CO6]	[2M]
2	a	Evaluate the equation for voltage and current at any point in a transmission	[L5][CO6]	[6M]
		line.		
	b	Discuss about Transmission line Parameters.	[L6][CO6]	[4M]
3	a	Evaluate the equation for Characteristic Impedance of a Transmission line.	[L5][CO6]	[5M]
	b	A telephone line has the following parameters: R =30 Ω /km, G =0 L =	[L3][CO6]	[5M]
		100mH/km , C = $20\mu\text{F/m}$. At 1kHz, calculate the characteristic impedance,		
		propagation constant and velocity of the signal.		
4	a	Explain about Microstrip Transmission Line.	[L2][CO6]	[5M]
	b	A distortion less line has $Z_0=60 \Omega$ Attenuation constant = 20 mNp/m and	[L3][CO6]	[5M]
		u=0.6c (c is velocity of light) Find the primary parameters of the		
_		transmission line(R L C G and λ) at 100MHz.	[[5][COC]	[#N #7
5	a	Evaluate the equation for Input Impedance of the transmission line.	[L5][CO6]	[5M]
	b	A Certain transmission line 2m long operating at $\omega = 10^6$ rad/s has $\alpha = 8$ bd/m,	[L3][CO6]	[5M]
		$\beta=1$ rad/m, and $Z_0=60+j40\Omega$. If the line is connected to a source of		
		10 angle(0^0) V, $Z_g = 40\Omega$ and terminated by a load of 20 +j 50Ω , determine the input impedance.		
6	a	Relate SWR and reflection coefficient.	[L2][CO6]	[5M]
0	b	Explain the applications of transmission lines.	[L2][CO6]	[5M]
7	a	Discuss about Transients on Transmission Lines.	[L6][CO6]	[5M]
′	b	A low loss transmission line of 100 Ω characteristics impedance is connected	[L3][CO6]	[5M]
	D	to a load of 200 Ω . Calculate the voltage reflection coefficient and the	[E3][CO0]	
		standing wave ratio.		
8		A 50Ω lossless transmission line is terminated on a load impedance of ZL	[L3][CO6]	[10M]
		= $(25 + i 50)\Omega$. Use the smith chart to find.		
		i) Voltage reflection coefficient.		
		ii) VSWR.		
		iii) input impedance of the line, given that the line is 3.3λ long.		
9	a	Explain about the smith chart for finding the SWR and Reflection co-	[L2][CO6]	[7M]
		efficient.	[][]	[]
	b	List out the applications of smith chart?	[L1][CO6]	[3M]
10	A	30 m long lossless transmission line with $Z_0 = 50\Omega$ operating at 2 MHz is	[L3][CO6]	[10M]
		minated with a load $Z_L = 60 + j 40\Omega$. If $u = 0.6$ C on the line, find the		
		lection coefficient, the standing wave ratio S and the input impedance.		<u></u>
11		lossless transmission line with Z_0 =50 Ω is 30m long and operates at 3MHz.	[L3][CO6]	[10M]
		The line is terminated with a load ZL= $70 + j50\Omega$, If u=0.6c on the line.		
		Compute reflection coefficient, standing wave ratio and Input impedance,		
		load impedance, SWR and complex reflection coefficient		
		(i) without using smith chart		
		(ii) Using smith chart		

Prepared by:
1. Mr. J.RAJANIKANTH
Associate Professor/ECE
2. Mr. K.D MOHANA SUNDHARAM
Assistant Professor/ECE